
CSE 451: Operating Systems

Hard Lessons Learned

Windows

Reader/Writer Locks

Gary Kimura



But first some Truth in advertising
Wait()

• Wait() in Windows comes in many flavors and is not 
as simple was we’ve made it out to seem.

• You can wait() for a single, any, or multiple
events/objects and not just locks

• You can optionally specify a timeout period

• When returning from a wait you therefore need to 
check why wait() returned.

1/28/2026 2



Without going into great details
A brief look at deadlocks and starvation

• In lay terms a Deadlock is when a thread holds a lock 
(lock1) and is waiting for another lock (lock2) that it 
will never get because a second thread holds lock2 
and is waiting to get lock1.  
- Circular wait. Aka deadly embrace.
- Deadlocked threads are typically in the blocked
state.
- Root cause is often how one uses (misuses) locks

1/28/2026 3



Without going into great details
A brief look at deadlocks and starvation

• In lay terms Starvation is when a thread is ready to 
run but because of scheduling peculiarities it never 
gets a chance to run, most likely because there is a 
higher priority thread always running.
- Starved threads are typically stuck in the ready
queue.
- A problem mostly blamed on the scheduler.

1/28/2026 4



Priority Inversion and starvation

• In lay terms Priority Inversion is when a high priority 
thread is waiting for a lock owned by a lower priority 
thread that cannot make progress because it is being 
starved.

• Example using Undergraduate, Graduate, and 
Professor waiting to get coffee.

• One solution is to do a priority boost. 

• Note: This is not practical using monitors.

1/28/2026 5



7

Windows Readers/Writers nuances

• Call EResource in Windows.  

• Used the terms exclusive and shared access.

• Avoided starving exclusive by making shared 
requests wait

• Allowed recursive acquisition of a lock.  Meant 
keeping ownership information

• Addressed an issue called priority inversion

• Then one hack added after another. 
– Added call to “Try” to acquire access without blocking

– Added call to starve an exclusive waiter

– Added call to release lock for a different thread

– Augh…



Picture of the resource

1/28/2026 8

Current State
- Free
- Shared
- Exclusive

List of current owners with their count

List of waiting readers/shared

List of waiting writers/exclusive

State Transitions
• Free -> Shared
• Free -> Exclusive
• Shared -> Free
• Exclusive -> Free
• Shared -> Exclusive
• Exclusive -> Shared



Where we started

• ExInitializeResource

• ExAcquireResourceShared
– If currently free, then it’s yours

– If currently exclusive, then you wait

– If currently shared and you already have it, then up your count

– If currently shared and there are no exclusive waiters then you it’s 
yours

– If currently shared and there is an exclusive waiter, then you wait

• ExAcquireResourceExclusive
– Similar logic as above

• ExReleaseResource
– The usual logic but now Ping-Pong back-and-forth between shared 

and exclusive if necessary

1/28/2026 9



Added “features?”
• ExAcquireResourceShared( Wait );

• ExAcquireResourceExclusive( Wait );

• ExAcquireSharedStarveExclusive

• ExReleaseResourceForThread

• ExConvertExclusiveToShared

• ExDisableResourceBoost

• ExReinitializeResource

• ExSetResourceOwnerPointer

• ExDeleteResource

1/28/2026 10



More added “features?”

• ExGetExclusiveWaiterCount

• ExGetSharedWaiterCount

• ExIsResourceAcquiredExclusive

• ExIsResourceAcquiredShared

• Bottom line:  Learning to say “NO” to requests for 
adding new features.

1/28/2026 11


