CSE 451: Operating Systems
Hard Lessons Learned

Windows
Reader/Writer Locks

Gary Kimura

But first some Truth in advertising
Wait()
« Wait() in Windows comes in many flavors and is not

as simple was we’ve made it out to seem.

* You can walit() for a single, any, or multiple
events/objects and not just locks

* You can optionally specify a timeout period

* When returning from a wait you therefore need to
check why wait() returned.

1/28/2026

Without going into great details
A brief look at deadlocks and starvation

* Inlay terms a Deadlock is when a thread holds a lock
(lock1) and is waiting for another lock (lock2) that it
will never get because a second thread holds lock2
and is waiting to get lock1.

- Circular wait. Aka deadly embrace.
- Deadlocked threads are typically in the blocked

state.
- Root cause is often how one uses (misuses) locks

1/28/2026 3

Without going into great details
A brief look at deadlocks and starvation

* Inlay terms Starvation is when a thread is ready to
run but because of scheduling peculiarities it never
gets a chance to run, most likely because there is a
higher priority thread always running.

- Starved threads are typically stuck in the ready

queue.
- A problem mostly blamed on the scheduler.

1/28/2026

Priority Inversion and starvation

* Inlay terms Priority Inversion is when a high priority
thread is waiting for a lock owned by a lower priority
thread that cannot make progress because it is being

starved.

« Example using Undergraduate, Graduate, and
Professor waiting to get coffee.

* One solution is to do a priority boost.
* Note: This is not practical using monitors.

1/28/2026

Windows Readers/\Writers nuances

Call EResource in Windows.
Used the terms exclusive and shared access.

Avoided starving exclusive by making shared
requests wait

Allowed recursive acquisition of a lock. Meant
keeping ownership information

Addressed an issue called priority inversion

Then one hack added after another.
— Added call to “Try” to acquire access without blocking
— Added call to starve an exclusive waiter

— Added call to release lock for a different thread
— Augh...

Picture of the resource

Current State
- Free

- Shared
- Exclusive

—> List of current owners with their count

—> List of waiting readers/shared

—> List of waiting writers/exclusive

State Transitions
 Free -> Shared

 Free -> Exclusive

1/28/2026

 Shared -> Free

» Exclusive -> Free

« Shared -> Exclusive
* Exclusive -> Shared

Where we started

ExInitializeResource

ExAcquireResourceShared

— If currently free, then it's yours

— If currently exclusive, then you wait

— If currently shared and you already have it, then up your count

— If currently shared and there are no exclusive waiters then you it's
yours

— If currently shared and there is an exclusive waiter, then you wait

ExAcquireResourceExclusive
— Similar logic as above

ExReleaseResource

— The usual logic but now Ping-Pong back-and-forth between shared
and exclusive if necessary

1/28/2026 9

Added “features?”

« ExAcquireResourceShared(Wait);
« ExAcquireResourceExclusive(Wait);

« ExAcquireSharedStarveExclusive
« ExReleaseResourceForThread

« ExConvertExclusiveToShared
« ExDisableResourceBoost

 EXxReinitializeResource
« ExSetResourceOwnerPointer
« ExDeleteResource

1/28/2026 10

More added “features?”

 ExGetExclusiveWaiterCount
« ExGetSharedWaiterCount

« ExlIsResourceAcquiredExclusive
« ExIsResourceAcquiredShared

« Bottom line: Learning to say “NO” to requests for
adding new features.

1/28/2026 11

